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01B Pores - The Driving Force for Sintering 
 

 

  

 

 

 

Questions: 
Driving Force 
Driving force for densification - it must be related to the pores wanting to fill.  

Sintering Rate 
Sintering rate = (driving force)*(kinetics - rate of the process, here we are concerned 
with the rate mass transport). 

Solid state diffusion  
Equation for the flux of atoms in terms of the driving force and the diffusion coefficient.  

(Mathematically the flux equation is the same as in heat transfer and fluid 
mechanics. In fluid mechanics the driving force is the pressure gradient and 
the rate is related to the viscosity - viscosity is related to the diffusion, 
i.e., the movement of atoms/molecules in the liquid).  

Diffusion Coefficient 
The phenomenon of diffusion or diffusivity is very general. As a result the coefficient of 
diffusion has the units of m2 s–1.  
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Flux 
Flux is also a universal quantity. For example in fluid mechanics where there is mass 
flowing through pipe under a pressure gradient, the flux is written in units of mass area–1 
time–1. 

In diffusional transport mass can be written as moles or the number of atoms (equal to 
moles times the Avogadro's number) 

Description of flux in diffusional mass transport 
Volume of Matter 

 is the volume per molecule (e.g. zirconium oxide) 

So, for example: 

  

where  is the volume per mole, and  is the Avogadro's Number 

   

Note that the molar volumes is given by the ratio of the molecular wt divided by the 
density: 

  

If  is in units of g mol–1 and the density in g cm–3, the the molar volume will be in 
units of cm3. You can divide by 106 to convert into m3. 

Flux of diffusional mass transport 
The symbol is 

 in moles per unit area per unit time 

   or, in the number of atoms per unit area per unit time. 

The volume transported per unit time is then . 
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The Driving Force for Sintering 
Geometrical Distribution of Pores 
We begin with a geometrical distribution of the pores. We idealize the structure as being a 
packing of cubes where each cube represents one particle, and the size of the cube, , is 
equal to the particle size.  

 

Imagine pores sitting at the corners of the cubes. So that each pore is shared by eight 
cubes. Define a unit cell which captures this geometry, which we say is a cube with an edge 
length of .  

 

 

The picture on the left is a cross section of many grains (particles, cubes etc.) The 
picture of the right is plan view of the grain boundary with the pore spaced a distance  
from one another.  

Sintering produced a compressive stress on the body 
The driving force for sintering is like a pressure exerted on the body to make it shrink. 
Consider for example the pore in the figure on the left, just below, being sintered away to 
give a dense material shown on the right. If a weight were attached to the body then 
sintering of will the weight, meaning that sintering exerts a compressive force on the 
body. 
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Note that hanging a weight slows the sintering because it pulls in the opposite direction 
to densification. Indeed, if the applied weight was equal to the sintering pressure (time 
the cross-sectional area of the sample to convert pressure into a force) then sintering 
would stop. 

Application of the Principal of Virtual work to Calculate the Sintering 
Pressure 
In this approach we equate the mechanical work to the reduction in the surface energy of 
the pore. 

Consider a pore in of radius  to shrink by . Assume that there is one pore in a unit 
cell as described on page 3. Therefore, 

  

The mechanical work done by shrinkage of the pore is given by 

        (1) 

where  is the decrease in the volume of the pore. 

The mechanical work is provided by the decrease in the surface energy of the pore,  

        (2) 

where  is the surface energy with units of J m–2,  that is the surface area of 

the pore.  

From the virtual work principle (i) and (2) must be equal, which gives 
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which gives that 

        (3) 

That is, the sintering pressure within a body containing pores is given by the surface 
energy and the radius of curvature of pore as in Eq. (3). 

The Shape of Real Pores in the Grain Boundary: the Contact Angle 
Pores at grain boundaries have a "lenticular" shape as shown below: 

While the sintering pressure exerted by such a pore is still given by Eq. (3), the radius 
of curvature is now defined by the contact angle where the free surfaces of the pore meet 
the grain boundary: 

The grain boundary "surface tension" is in equilibrium with the surface tension from the 
free surface, which defines the contact angle, 

        (4) 

You can appreciate that the radius of curvature can be constructed from simple geometry for 
a given value of the contact angle, and for a specific volume of the void.  

An interesting feature of such a construction would be that if in the above figure the 
contact angle becomes less than 30o then the radius of curvature becomes convex and the 
sintering pressure vanishes.  
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